Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
CRISPR J ; 7(2): 73-87, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38635328

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing is evolving into an essential tool in the field of biological and medical research. Notably, the development of catalytically deactivated Cas9 (dCas9) enzyme has substantially broadened its traditional boundaries in gene editing or perturbation. The conjugation of dCas9 with various molecular effectors allows precise control over transcriptional processes, epigenetic modifications, visualization of chromosomal dynamics, and several other applications. This expanded repertoire of CRISPR-Cas9 applications has emerged as an invaluable molecular tool kit that empowers researchers to comprehensively interrogate and gain insights into health and diseases. This review delves into the advancements in Cas9 protein engineering, specifically on the generation of various dCas9 tools that have significantly enhanced the CRISPR-based technology capability and versatility. We subsequently discuss the multifaceted applications of dCas9, especially in interrogating the regulation and function of genes that involve in supporting cancer pathogenesis. In addition, we also delineate the designing and utilization of dCas9-based tools as well as highlighting its current constraints and transformative potentials in cancer research.


Asunto(s)
Edición Génica , Neoplasias , Sistemas CRISPR-Cas/genética , Proteína 9 Asociada a CRISPR/genética , Epigénesis Genética , Neoplasias/genética
2.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37047421

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is a hypervascular tumor that is characterized by bi-allelic inactivation of the VHL tumor suppressor gene and mTOR signalling pathway hyperactivation. The pro-angiogenic factor PDGFB, a transcriptional target of super enhancer-driven KLF6, can activate the mTORC1 signalling pathway in ccRCC. However, the detailed mechanisms of PDGFB-mediated mTORC1 activation in ccRCC have remained elusive. Here, we investigated whether ccRCC cells are able to secrete PDGFB into the extracellular milieu and stimulate mTORC1 signalling activity. We found that ccRCC cells secreted PDGFB extracellularly, and by utilizing KLF6- and PDGFB-engineered ccRCC cells, we showed that the level of PDGFB secretion was positively correlated with the expression of intracellular KLF6 and PDGFB. Moreover, the reintroduction of either KLF6 or PDGFB was able to sustain mTORC1 signalling activity in KLF6-targeted ccRCC cells. We further demonstrated that conditioned media of PDGFB-overexpressing ccRCC cells was able to re-activate mTORC1 activity in KLF6-targeted cells. In conclusion, cancer cell-derived PDGFB can mediate mTORC1 signalling pathway activation in ccRCC, further consolidating the link between the KLF6-PDGFB axis and the mTORC1 signalling pathway activity in ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Proteínas Proto-Oncogénicas c-sis/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Línea Celular Tumoral , Becaplermina/metabolismo , Neoplasias Renales/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
3.
Cells ; 11(10)2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35626649

RESUMEN

Breast cancer is the leading cause of cancer-related deaths in women. The aggressive breast cancer subtype is commonly linked to the genetic alterations in the TP53 tumor suppressor gene, predominantly the missense mutations. Robust experimental models are needed to gain better insights into these mutations' molecular properties and implications in tumorigenesis. The generation of such models harboring the alterations is feasible with the CRISPR-based gene editing technology. Moreover, the development of new CRISPR applications, particularly DNA base and prime editing, has considerably improved the precision and versatility of gene editing. Here, we employed the prime editing tool to revert a TP53 missense C > T mutation (L194F) in a T47D luminal A breast cancer cell line. In parallel, this prime editing tool was also utilized to introduce the L194F mutation in HEK293T cells. To assess the prime editing efficiency in both cell lines, we first performed Sanger sequencing in the prime-edited cells pool and single cell-derived clones. However, the Sanger sequencing approach did not detect any base substitution in these cell lines. Next, by employing the more sensitive amplicon target sequencing, we managed to identify the expected substitution in these T47D and HEK293T cells, albeit the editing efficiency was low. In light of these findings, we discussed the technical aspects and provided suggestions for improve the prime editing workflow and efficiency for future experiments.


Asunto(s)
Neoplasias de la Mama , Sistemas CRISPR-Cas , Neoplasias de la Mama/genética , Sistemas CRISPR-Cas/genética , Femenino , Células HEK293 , Humanos , Mutación/genética , Proteína p53 Supresora de Tumor/genética , Flujo de Trabajo
4.
Oncol Lett ; 18(1): 830-837, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31289560

RESUMEN

The present study aimed to investigate the anti-cancer activity of imidazo[1,2-a]pyridine 5-7 in the A375 and WM115 melanoma and HeLa cervical cancer cell lines. The viability of cancer cells was analyzed by the MTT assay. Apoptosis was quantified by flow cytometry following staining of the cells with AnnexinV/propidium iodide (PI). The cell cycle was evaluated by flow cytometry after staining of cells with PI. The three compounds inhibited the proliferation of all cells for half maximal inhibitory concentration ranging from 9.7 to 44.6 µM following 48-h treatment. In addition, all cancer cells were more sensitive to compound 6 compared with the other compounds. Treatment with compound 6 induced G2/M cell cycle arrest and a significant increased level of intrinsic apoptosis in all tested cells. Furthermore, compound 6 reduced the levels of phospho (p)-protein kinase B and p-mechanistic target of rapamycin, and increased levels of the cell cycle inhibitors p53 and p21 and of the apoptosis-associated proteins BCL2 associated X protein and active caspase-9. Silencing p53 in A375 melanoma cells reduced compound 6-induced apoptosis, which suggested that compound 6 may induce p53-partially mediated apoptosis. These results demonstrated that imidazo[1,2-a]pyridines 5-7 are potential effective compounds in the treatment of melanoma and cervical cancers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...